Diketahuiz = sin kuadrat x + cos kuadrat x. 3 cos 3x = 2x sin 3x + 3x²cos 3x (jawaban: G'' (x)=2cosx cós 2x+ sin x sin 2x 3 sin2 x cosx b. Jika y = kxⁿ maka turunan dari y adalah y' = kn xⁿ⁻¹. Turunan sin kuadrat x adalah sin 2x.
$\begingroup$ I thought this one up, but I am not sure how to solve it. Here is my attempt $$\sin x-\sqrt{3}\ \cos x=1$$ $$\sin x-\sqrt{3}\ \cos x^2=1$$ $$\sin^2x-2\sqrt{3}\sin x\cos x\ +3\cos^2x=1$$ $$1-2\sqrt{3}\sin x\cos x\ +2\cos^2x=1$$ $$2\cos^2x-2\sqrt{3}\sin x\cos x=0$$ $$2\cos x\cos x-\sqrt{3}\sin x=0$$ $2\cos x=0\Rightarrow x\in \{\frac{\pi }22n-1n\in\Bbb Z\}$ But how do I solve $$\cos x-\sqrt{3}\sin x=0$$ asked Nov 10, 2018 at 115 $\endgroup$ 4 $\begingroup$Hint at the very beginning divide both sides by $2$ and use the formula for the sin of difference of 2 arguments answered Nov 10, 2018 at 117 MakinaMakina1,4441 gold badge7 silver badges17 bronze badges $\endgroup$ 1 $\begingroup$ Hint $$\cos x - \sqrt{3}\sin x = 0 \Leftrightarrow \frac{\sin x}{\cos x} = \frac{\sqrt{3}}{3} \Leftrightarrow \tan x = \frac{\sqrt{3}}{3}$$ Note You can divide by $\cos x$, since if the case was $\cos x =0$, it would be $\sin x = \pm 1$ and thus the equation would yield $\pm \sqrt{3} \neq 0$, thus no problems in the final solution, as the $\cos$ zeros are no part of it. answered Nov 10, 2018 at 117 gold badges29 silver badges86 bronze badges $\endgroup$ 8 $\begingroup$ Multiply by the conjugate $\cosx - \sqrt{3} \sinx\cosx + \sqrt{3} \sinx = 0$. Then we have $\cos^2x-3\sin^2x=0$. This is the same thing as $1-4\sin^2x=0$ or $\sinx=\pm \frac{1}{2}$. NOTE OF CAUTION This gives you the answers to both the question and its conjugate. You'd have to plug in and check which ones are the answers you're looking for. answered Nov 10, 2018 at 124 JKreftJKreft2321 silver badge7 bronze badges $\endgroup$ $\begingroup$ You can turn the equation to a polynomial one, $$s-\sqrt3 c=1$$ is rewritten $$s^2=1-c^2=1+\sqrt3c^2,$$ which yields $$c=0\text{ or }c=-\frac{\sqrt3}2.$$ Plugging in the initial equation, $$c=0,s=1\text{ or }c=-\frac{\sqrt3}2,s=-\frac12.$$ Retrieving the angles is easy. answered Nov 10, 2018 at 1025 $\endgroup$ $\begingroup$ It's intersting, I believe, to consider also this other method for solving any linear equation in sine and cosine provided that the argument is the same for both functions. Recall that cosine and sine are abscissa and ordinate of points on the circumference of radius $1$ and center in the origin of the axes. Solving your first equation, therefore, is equivalent to finding the interection points between straight line $$r Y-\sqrt 3 X = 1 $$ and the circumference $$\gamma X^2+Y^2 = 1.$$ This brings you the system $$ \begin{cases} Y-\sqrt 3 X = 1\\ X^2+Y^2 = 1. \end{cases} $$ Replacing $Y = \sqrt 3 X + 1$ in the second equation gives you the quadratic equation $$2X^2 +\sqrt 3 X =0,$$ and, from here, to the solutions $$X_1 = 0, Y_1 = 1$$ and $$\leftX_2 = -\frac{\sqrt 3}{2}, Y_2 = -\frac{1}{2}\right,$$ with a straightforward trigonometric interpretation. I leave you as an exercise to apply the same approach to the equation you propose $$\cos x -\sqrt 3 \sin x = 0.$$ answered Feb 23, 2019 at 2007 dfnudfnu6,4051 gold badge8 silver badges26 bronze badges $\endgroup$ 1 You must log in to answer this question. Not the answer you're looking for? Browse other questions tagged .Coskuadrat x +sin kuadrat x= - 11017685 wike123 wike123 04.07.2017 Matematika Sekolah Menengah Atas terjawab • terverifikasi oleh ahli Cos kuadrat x +sin kuadrat x= 2 Lihat jawaban Iklan Iklan Pengguna Brainly Pengguna Brainly pakai cara panjangnya, pak, Kalok di kurang berapa jadinya? Iklan AnswerVerifiedHint Now we will first consider the function $\sin \sqrt{x}$ . let us assume the function is periodic and hence we get $\sin \sqrt{x+T}=\sin \sqrt{x}$ . Now substituting x = 0 and x = T we will get two equations. Dividing the two equations we will find an equation which is a contradictory statement. Hence we prove that the function $\sin \sqrt{x}$ is not periodic. Hence $\sin \sqrt{x}+\cos \sqrt{x}$ is also not periodic. Complete step-by-step answerNow let us first consider the function $\sin \sqrt{x}$ . Let us say that the function is periodic and the period is T. Hence we can say that $\sin \sqrt{x+T}=\sin \sqrt{x}$Now substituting x = 0 we get$\sin \sqrt{T}=0............\left 1 \right$Now we know that if $\sin x=0$ then $x=2n\pi $ . Hence we get $\sqrt{T}=2n\pi ..........\left 2 \right$Now again consider $\sin \sqrt{x+T}=\sin \sqrt{x}$ . Now let us substitute x = T . Hence we get, $\sin \sqrt{T+T}=\sin \sqrt{T}$Now from equation 1 we have $\sin \sqrt{T}=0$ hence substituting this value in the equation we get, $\sin \sqrt{2T}=0$Now again we know that if $\sin x=0$ then $x=2n\pi $Hence using this we can say that $\sqrt{2T}=2m\pi $$\sqrt{2T}=2m\pi ............\left 3 \right$Now let us divide equation 3 by equation 2. Hence we get, $\dfrac{\sqrt{2T}}{\sqrt{T}}=\dfrac{2m\pi }{2n\pi }$$\Rightarrow \sqrt{2}=\dfrac{m}{n}$Now we know that $\sqrt{2}$ is irrational and hence cannot be written in the form of $\dfrac{p}{q}$ . Hence we arrive at a contradiction. The contradiction arises because of our wrong assumption that $\sin \sqrt{x}$ is Periodic. Hence we can say that the function $\sin \sqrt{x}$ is non periodic. Now addition of any function to a non-periodic function is not we can say that $\sin \sqrt{x}+\cos \sqrt{x}$ is not a periodic function. So, the correct answer is “Option d”.Note Now note that the domain of periodic function is always $\left -\infty ,\infty \right$ . In our case we have the domain of function is $\left 0,\infty \right$ . Hence we can directly say that the function is not periodic. Now note that the converse of the statement is not true which means every function with domain $\left -\infty ,\infty \right$ is not periodic. Take y = x for example. The function has domain $\left -\infty ,\infty \right$ but is not periodic. Last updated date 10th Jun 2023•Total views today Persamaankuadrat yang akar akarnya 3 kali akar-akar persamaan adalah. 1 hours ago. Komentar: 0. Dibaca: 35. Share. Like. Kiat Bagus Yang. Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber MatematikaTRIGONOMETRI Kelas 11 SMAPersamaan TrigonometriRumus Jumlah dan Selisih Sinus, Cosinus, TangentRumus Jumlah dan Selisih Sinus, Cosinus, TangentPersamaan TrigonometriTRIGONOMETRIMatematikaRekomendasi video solusi lainnya0124Nilai tan 240 - tan 210 adalah . . . .0325Jika tan alpha = 1, tan beta = 1/3 dengan alpha dan beta ...0245Jika 2 sin a cos b=sina+b+sina-b ...... 1 2 cos a s...0226Nilai dari -12sin165cos75 adalah . . . .Teks videojika menemukan soal seperti ini maka kita bisa menjabarkan cos dan Sin yang ada pada soal cos kuadrat x dikurangi Sin kuadrat X per Sin x cos x = a lalu kedua ruas dikuadratkan menjadi cos 44 X kurangi 2 cos kuadrat X Sin kuadrat X + Sin pangkat 4 X per Sin kuadrat x cos kuadrat X = a kuadrat lalu kita bisa merubah bentuk dengan mengeluarkan negatif 2 nya menjadi cos ^ 4 x + Sin 4 x per Sin kuadrat X cos kuadrat X min 2 = a kuadrat lalu min 2 pada ruas kiri pindah ke ruas kanan menjadi cos pangkat 4 x + Sin pangkat 4 X per Sin kuadrat x cos kuadrat X = a kuadrat + 2 lalu kembali pada soal nilai kotangan kuadrat x ditambah Tan kuadrat X kita bisa rubah bentuknya kotangan kuadrat x ditambah tangen kuadrat X kotangan kuadrat X bisa kita ubah bentuk menjadi cos kuadrat X per Sin kuadrat x ditambah Tan kuadrat X bisa kita berubah bentuk menjadi Sin kuadrat X per cos kuadrat X maka bentuknya menjadi cos ^ 4 x + Sin pangkat 4 X per Sin kuadrat x + cos kuadrat X maka Bentuknya sama jadi hasilnya adalah a kuadrat + 2 yaitu option a sampai jumpa pada soal berikutnya Rumusrumus Trigonometri . Definisi . Rumus-rumus dasar. sin 2 x + cos 2 x = 1. sin 2 x = 1 — cos 2 x. cos 2 x = 1 — sin 2 x. tan 2 x + 1 = sec 2 x. cot 2 x + 1 = csc 2 x. Rumus-rumus segitiga. Aturan Sinus. Aturan Cosinus. a 2 = b 2 + c 2 — 2bc cos A. b 2 = a 2 + c 2 — 2ac cos B. c 2 = a 2 + b 2 — 2ab cos C. Luas segitiga. L = 1/2 ab sin C r/learnmath Post all of your math-learning resources here. Questions, no matter how basic, will be answered to the best ability of the online subscribers. - We're no longer participating in the protest against excessive API fees, but many other subreddits are; check out the progress [among subreddits that pledged to go dark on 12 July 2023] and [the top 255 subreddits] even those that never joined the protest. Members Online sin(2x) = 2 sin (x) . cos (x) sin^2 (x) . cos^2 (x) = (sin (x) . cos (x))^2 = (sin (2x) / 2)^2 = sin^2 (2x) / 4 sin^2 (2x) / 4. 10 Gaya Rambut Agnes Monica Seringkali tampil fresh dengan gaya yang fashionable, Agnes Monica menjadi salah satu trendsetter yang dipuja banyak penggemarnya. y0mpog.